此文章來自奇摩知識+如有不便請留言告知
標題:
A-maths~
發問:
我有d問題唔識,麻煩大家了。 1.已知sin^2A/1+2cos^2A=3/19,其中180度
最佳解答:
1. sin^2 A/(1+2cos^2 A)=3/19 Try to reduce it into an equation with SINGLE FUNCTION. (sin A)^2/[1+2(cos A)^2]=3/19 (sin A)^2/[1+2(1 - (sin A)^2)]=3/19 (sin A)^2/[3 - 2(sin A)^2)]=3/19 19 (sin A)^2 = 3 * [3 - 2(sin A)^2)] 19 (sin A)^2 = 9 - 6(sin A)^2 25 (sin A)^2 = 9 (sin A)^2 = 9/25 sin A = -3/5 since A is in the 3rd quadrant => sec A = 1/cos A = -5/4, tan A = 3/4 tan A/(1 + sec A) = 3/4 / (1 - 5/4) = 3/4 / (-1/4) = -3 2. sin(750度+a)tan(765度+a)tan(225度-a)sec(a-60度)=1 = sin(2*180 + 30 + a) * [tan(2*180 + 45 + a) * tan(225 - a)] / cos (60 - a) = sin(30 + a) / cos (60 - a) * [tan(45 + a) * tan(225 - a)] = [(sin 30cos a + cos 30sin a) / (cos 60cos a + sin 60sin a)] * [(tan 45 + tan a)/(1 - tan 45tan a) * (tan 225 - tan a)/(1 + tan 225tan a)] = [(1/2*cos a + 3^(1/2)/2*sin a) / (1/2*cos a + 3^(1/2)*sin a)] * [(1 + tan a)/(1 - tan a) * (1 - tan a)/(1 + tan a)] = 1 做呢類數, 其實冇什麼特別的心得, 只要小心的做, 寫一步驟, 諗一諗有冇寫錯, 便是了. 重有做第一題做到sin A= -3/5, 其實可以自己找出 A 的數值(216.87度), 再快速代入sin^2A/1+2cos^2A, 檢查是否仍然等於3/19, 如果不同, 就顯然當中有錯. 最後得出-3, 也可以自己把216.87度代入tanA/(1+secA)去核對是否真係等於-3. 這樣就穩當得多啦. 當然formula要熟練啦, 要多練習思考才行. 可參考以下有關trigonometric identities的網址: http://en.wikipedia.org/wiki/Trigonometric_identity
其他解答:C8D74AB62542840B
留言列表