close
標題:
F.1幾何數,唔該幫幫手
發問:
如題,唔該 16)In△PQR as shown ,S and T are the points on QR ad PR respectively. If ∠RPQ=53°,∠PQR=65° and TS⊥QR,find (a)∠PTS, (b)∠STP+∠TPQ+∠PQS+∠QST. 17) (a)Construct an obtuse- angled isosceles triangle (b)Is it possible to have teo obuse angles in a triangle?Why? 今晚之內要.... 要有過程,唔該曬
16. In △PQR as shown, S and T are the points on QR ad PR respectively. If ∠RPQ = 53°, ∠PQR = 65° and TS⊥QR, find ( a ) ∠PTS, ( b ) ∠STP + ∠TPQ + ∠PQS + ∠QST. Sol: ∠RPQ + ∠PQR + ∠QRP = 180° 53° + 65° + ∠QRP = 180° ∠QRP = 62° ∠PTS = ∠TSR + ∠QRP ∠PTS = 90° + 62° ∠PTS = 152° ( b ) ∠STP + ∠TPQ + ∠PQS + ∠QST = 152° + 53° + 65° + 90° = 360° Ans: ( a ) 152° ( b ) 360° 17 ( a ) Construct an obtuse-angled isosceles triangle ( b ) Is it possible to have two obtuse angles in a triangle? Why? Sol: ( a ) Draw a diagram yourself. Draw a △ABC AB = AC, and ∠BAC > 90° Then, it is an obtuse-angled isosceles triangle. ( b ) No. 三角形的內角和為 180°, 而鈍角大於 90°, 若一個三角形有兩個鈍角, 則內角和就會大於 180°. 所以, 一個三角形不可能有兩個鈍角. Send me a letter if any steps you don’t understand.
其他解答:
F.1幾何數,唔該幫幫手
發問:
如題,唔該 16)In△PQR as shown ,S and T are the points on QR ad PR respectively. If ∠RPQ=53°,∠PQR=65° and TS⊥QR,find (a)∠PTS, (b)∠STP+∠TPQ+∠PQS+∠QST. 17) (a)Construct an obtuse- angled isosceles triangle (b)Is it possible to have teo obuse angles in a triangle?Why? 今晚之內要.... 要有過程,唔該曬
- 圓與三角比演算@1@
- from Shun Lee to Po lam at haif past eight,what can I take
- 邊度有得賣sofina & sheseide anessa spf50+pa+++ ge防晒品--
此文章來自奇摩知識+如有不便請留言告知
最佳解答:16. In △PQR as shown, S and T are the points on QR ad PR respectively. If ∠RPQ = 53°, ∠PQR = 65° and TS⊥QR, find ( a ) ∠PTS, ( b ) ∠STP + ∠TPQ + ∠PQS + ∠QST. Sol: ∠RPQ + ∠PQR + ∠QRP = 180° 53° + 65° + ∠QRP = 180° ∠QRP = 62° ∠PTS = ∠TSR + ∠QRP ∠PTS = 90° + 62° ∠PTS = 152° ( b ) ∠STP + ∠TPQ + ∠PQS + ∠QST = 152° + 53° + 65° + 90° = 360° Ans: ( a ) 152° ( b ) 360° 17 ( a ) Construct an obtuse-angled isosceles triangle ( b ) Is it possible to have two obtuse angles in a triangle? Why? Sol: ( a ) Draw a diagram yourself. Draw a △ABC AB = AC, and ∠BAC > 90° Then, it is an obtuse-angled isosceles triangle. ( b ) No. 三角形的內角和為 180°, 而鈍角大於 90°, 若一個三角形有兩個鈍角, 則內角和就會大於 180°. 所以, 一個三角形不可能有兩個鈍角. Send me a letter if any steps you don’t understand.
其他解答:
文章標籤
全站熱搜
留言列表